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Let I, q(lz’) -1 (l7 ) be a diagonal operator assigning to vector-coordinate x; €
l2 the vector value f"x] We prove the estimates of entropy numbers of 7,. The
results confirm the conjecture stated in a recent paper by Cobos and Kiihn, and
extend their results to quasi-Banach setting. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Let us consider the space of sequences lq(lg) where 0< p< o0, 0<g<o00,
and the (quasi)-norm defined by the formula

o a/p) /4

2
2| 2 laml?

Jj=1 \im=1

with the usual extension for p = 0o and ¢ = co. We study entropy numbers
of the diagonal operator I: q(lzf) - lq(lz’) which assigns to each element
aj € 12 the element j~*a;. In thelr recent paper, Cobos and Kiihn [1] proved
two- 81ded estimates for the entropy numbers of /,, and gave interesting
applications to embedding theorems of Besov spaces into generalized
Lipschitz spaces.

In this paper, we improve the lower estimates of [1], and confirm the
conjectured order of the entropy numbers. We also give a new proof of
upper estimates, which extends the upper estimates of [1] to the case of the
quasi-Banach spaces.

Let us restate the definitions (see, for example [5]). Suppose K is a
compact set in a normed space Y, B(Y) is the closed unit ball.
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The entropy numbers ¢, are defined by

o
e(K;Y) = inf{e: Hxp,...,xm}: K < U (x; + 8B(Y))},

Jj=1

where the infimum is taken over all ¢ such that K can be covered by 2" balls
eB(Y) of radius e.

If 7T:X — Y is an operator from space X to space Y, then we can
speak about entropy numbers e, (7;X — Y) of operator T, defining
them as

en(T; X - Y) = e,(TBX); Y).

We will use the observation of [1] that the entropy numbers of 1, are equal
to the entropy numbers of the embedding operator / from the weighted
space 1,(j*1) with the (quasi)-norm

gy /4

o0 2 1/p
Z ja (Z |ajm|p>
m=1

J=1

to the space 1,(1%).
We write that a,< b, if there exists an absolute constant C such that
a, < Cb,, and we write a, ~ b, if simultaneously a, < b, and b, < a,.

2. MAIN RESULTS

THEOREM 2.1. Let 0< p<oo, 0<g<o0, and o> 0. Then
1 2,
K21 +loghyr " if a>2/p,

g g 2N\ _1 1
el 1y, = 1g(15) = k751 + log k)p if «=2/p,

IR

=

if a<2/p.

The upper estimate for p>1, and the lower estimate for any p >0 and
o <2/ p were proved in [1].

The main tool is the following result due to Schiitt [6] for the case of
Banach spaces 1< p<g<oo. It was extended recently to the quasi-Banach
space in [2,4,7].
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LEMMA 2.2. Let 0< p; < pp <00, then

1 if 1<k<log?2n,

1
log(2 + 1)\~ »
QI > 1) ~ (Og(kk)) ©if log2n<k<2n,

k=1 L L
27 2npp P if k=2n.

We also need the estimate of the entropy numbers of the diagonal
operator in the scalar case [3].

LeMMA 2.3.  Let I, be the diagonal operator I,(x) = j™*x;, j=1,2,3,....
Then for any q, 0<q< o0

1
enlysly = 1y) ~ v

Proof of Theorem 2.1 (Upper Estimate). Fix ¢ = 1/n*. Lemma 2.3 states
that there exist at most 2" elements y € /,, creating e-net & (I, : [, — 1) of the
image /, of the unit ball of /, in the space /,. Even more, all coordinates

yi=0forj=n+1,n+2,.

Let us now construct the enet & : lq(/“ﬂ’) — 1,(IZ)) for the set
of x, such that ||x: lq(/“lz’)||<1 Each x we write as {xi,x2,...,X;,...}
where each x; is an element of the finite-dimensional subspace 12
In turn, each x; has coordinates {le,.. JXjms -5 Xi ). We then
construct the enet &(1: lq(/”lz’) I,(/2)) in the space [,(/%). We
need to consider only elements x such that x; =0 for any vector x;
with j>=n.

The sequence of numbers {j°‘||xj||1p} belongs to the unit ball of /,.
Therefore, there exists an element y from e-net &(/,:/, — /,) such that
X1kl 3 — {yj}||1q<8. Observe that [[{j*y;}]l,<Const. Let us take X; =

2 x Then
[l 7

b — % LPON<||J — 22| || <
Il
Foreach j=1,...,m, m<n we apply Lemma 2.2 taking 2" points of the

net of the unit ball of Zg, where

m
> m=
=1
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This means that for each element y € £(Z, : [, — ;) there exists a 2"-element
net in the space /,(/2), approximating x with the error at most

m n l/q
{Z (w10 = )"+ Y (yj)q} :
Jj=1 Jj=m+1
Taking into account that ||{;*y;}||, < Const, we estimate the error by

sup  (j%en, (I : 12; - )+ m™).

I<j<sm

Now we have to choose the numbers #; in the optimal way.
If we put n; = %Zj(logn —j), j=1,2,...,logn, then applying the third
line of Lemma 2.2 to

sup  j e, (I: lfj - 1,2;)),

I1<j<logn
we obtain
i — —n2-J i — _ _ _
sup  27//Pjepn2t = gqup /PP < VP log T .
I1<j<logn 1<j<logn

This estimate is sufficient for any o > 0.

Choosing the numbers #; in the main interval logn<;j<m, we
consider three cases. We can take m = n'/*?(log n)H/ *P in the first
case, and m=n'/2 in the second and third cases. In each
case the application of the second line of Lemma 2.2 finishes the
proof.

Case 1. Let o> 2/ p. Put n; = n(log n)*?~2j~(r=1,

Case 2. Let a<2/p. Put n; = nj~ P~ Dm?p=2,

Case 3. Let o = 2/ p. Put n; = nj~'(logn) ™.

The upper estimate is proved. 1

We need the following statement, which supposedly is well known in
coding theory. We could not find the exact reference, and present its proof

here. In the following, |Q| denotes the cardinality of the set O, and the
“interval” [1, M] means the set {1,2,...,M}.

LEMMA 2.4. Let us consider a “brick” II < 7™, II =[1,M]", where
M is a natural number. Let s<m. Then there exists a set Q < Il such
that

(1) 101>
2) - xj;éyj}| > s for any two elements x, y € Q.
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Proof. We introduce the Hamming distance between two points x =
(x1,...,xn) and y = (y1,..., yu) of Z". The Hamming distance is given by

H(x, p) = |2 %7 v}

Set IT contains M™ elements. Let Q be a maximal subset of II such that for
any elements x, y € O, H(x,y)>s. If x € O then for at most M*() points
yell, H(x, y)<s. Since Q is the maximal subset

olM* (’”) > M
S

Proof of Theorem 2.1 (Lower Estimates). Take the blocks of vectors with
numbers from 7 to 2n and let k = 2"/2. By Lemma 2.2 for each block

or 0>

The lemma is proved. 1

log(2n—"/2 + 1 I/p 1/p—a
(M> ~ n n<j<2n.

Let us denote this number by & Then in each block we can take 22"¢-
separated points.

We can now apply Lemma 2.4, taking M =2, m=n and s =n/2.
Then |Q|>2€"/22"* The norm of each element in 1,15 s

2n 1/q
<Z 14) ~ nl/e.
Jj=n

The distance between any two elements

on/2

1/
Z (nl/P“)q q> nl/p7“+1/q
n/2 n/2 !
N i 2n/2p 2n/2p

Finally, we obtain

nl/p—oz

62/1/2”/2(1: lq(]“li/) — lq(lié)) > 271/—2P

or

log® P * m

T @.1)

en(l: 1, 1) = 1,(1%)) >
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For the same collection of blocks from » to 2n let k = n. Then by Lemma
2.2 for each block

1

e > ) > s

It means that in each block we have 2" n~*-separated points. We apply
again Lemma 2.4, taking M = 2", m = n, and s = n/2. Then |Q| > 2"’ The
norm of each element in lq(j‘“lif ) is n'/ and the distance between any two
elements >n'/77~*. This gives

i j 1
el 1,(P1) = 1,(13)) > i
or
.y y 1
enll : 17 1) = 14(13) > Ty (2.2)

These two estimates (2.1) and (2.2) give the necessary estimate from below,
except for the case a =2/ p.

Let us consider «=2/p, and take the same blocks numbered
from n to 2n. Then by Lemma 2.2 for each n<k<2"/? and for each
block

—ay . 72 2
e, = ) > T

Applying Lemma 2.4 with M = 2, m = n and s = n/2 we obtain that for a
subset

2n 14
An,2n =4qa: {Z (ijaj”[Z;;’)q} <1
Jj=n
generated by blocks numbered from # to 2n

ekn(An,DI; lq(li*)) > nl/pil/p’

Let us take r = ¢; log(logn), .. .,logn. Then the last estimate implies that in
a subspace generated by blocks numbered from 2" to 2!

y 1
e (Ao L(12) > 2Pkl p
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for any 2" <k <2%"'2". Choose k = ’;—7 Then for each subspace generated by
blocks numbered from 2" to 2/+!

; 1
enZ(Azr,er; lq(l?x,)) > m

We again apply Lemma 2.4, taking M = 27 m = logn, and s = %log n.
Then

.o 72/ J 1
e tognll (P E) = (1) > —

or

J J 1 1p
enll : 1,GP ) — 1,(12)) > < o8 ’"> .
m

Thus the theorem is proved. 1§

3. CONCLUDING REMARKS

The method of the above estimates used in the proof of
Theorem 2.1 can be easily applied in a more general situation. For
example, let 0< p; < py<oo and consider operator I, : [,(*13) = 1,(13).
Then _

el 1,(P12) = 1,(1%)

kY P p(] 4 log k) P2 e if «>2/p —2/ps,

< (K711 + log k))/n=t/p if 0 =2/p —2/p,
k=2 if O(<2/p1—2/p2.
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