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Let Ia : lqðl2
j

p Þ ! lqðl2
j

1Þ be a diagonal operator assigning to vector-coordinate xj 2
l2

j

p the vector-value j�axj: We prove the estimates of entropy numbers of Ia: The

results confirm the conjecture stated in a recent paper by Cobos and K .uuhn, and

extend their results to quasi-Banach setting. # 2002 Elsevier Science (USA)
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1. INTRODUCTION

Let us consider the space of sequences lqðl2
j

p Þ where 05p41; 05q41;
and the (quasi)-norm defined by the formula

X1
j¼1

X2j
m¼1

jajmjp
 !q=p

8<
:

9=
;

1=q

with the usual extension for p ¼ 1 and q ¼ 1: We study entropy numbers
of the diagonal operator Ia : lqðl2

j

p Þ ! lqðl2
j

1Þ which assigns to each element
aj 2 l2

j

p the element j�aaj: In their recent paper, Cobos and K .uuhn [1] proved
two-sided estimates for the entropy numbers of Ia; and gave interesting
applications to embedding theorems of Besov spaces into generalized
Lipschitz spaces.

In this paper, we improve the lower estimates of [1], and confirm the
conjectured order of the entropy numbers. We also give a new proof of
upper estimates, which extends the upper estimates of [1] to the case of the
quasi-Banach spaces.

Let us restate the definitions (see, for example [5]). Suppose K is a
compact set in a normed space Y ; BðY Þ is the closed unit ball.
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The entropy numbers en are defined by

enðK; Y Þ :¼ inf e: 9fx1; . . . ; x2ng: K �
[2n
j¼1

ðxj þ eBðY ÞÞ

( )
;

where the infimum is taken over all e such that K can be covered by 2n balls
eBðY Þ of radius e:

If T : X ! Y is an operator from space X to space Y ; then we can
speak about entropy numbers enðT ;X ! Y Þ of operator T ; defining
them as

enðT ;X ! Y Þ :¼ enðTBðX Þ; Y Þ:

We will use the observation of [1] that the entropy numbers of Ia are equal
to the entropy numbers of the embedding operator I from the weighted
space lqðjal2

j

p Þ with the (quasi)-norm

X1
j¼1

ja
X2j
m¼1

jajmj
p

 !1=p
0
@

1
A

q8<
:

9=
;

1=q

to the space lqðl2
j

1Þ:
We write that an�bn if there exists an absolute constant C such that

an4Cbn; and we write an ’ bn if simultaneously an � bn and bn � an:

2. MAIN RESULTS

Theorem 2.1. Let 05p51; 05q41; and a > 0: Then

ekðI : lqðjal2
j

p Þ ! lqðl2
j

1ÞÞ ’

k
�1
pð1 þ log kÞ

2
p�a

if a > 2=p;

k
�1
pð1 þ log kÞ

1
p if a ¼ 2=p;

k�
a
2 if a52=p:

8>>>>>>><
>>>>>>>:

The upper estimate for p51; and the lower estimate for any p > 0 and
a52=p were proved in [1].

The main tool is the following result due to Sch .uutt [6] for the case of
Banach spaces 14p4q41: It was extended recently to the quasi-Banach
space in [2, 4, 7].
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Lemma 2.2. Let 05p14p241; then

ekðI : lnp1
! lnp2

Þ ’

1 if 14k4log 2n;

logð2nk þ 1Þ
k

� � 1
p1

� 1
p2

if log 2n4k42n;

2�
k�1
2n n

1
p2

� 1
p1 if k52n:

8>>>>><
>>>>>:

We also need the estimate of the entropy numbers of the diagonal
operator in the scalar case [3].

Lemma 2.3. Let Ia be the diagonal operator IaðxÞ :¼ j�axj; j ¼ 1; 2; 3; . . . :
Then for any q; 05q41

enðIa; lq ! lqÞ ’
1

na
:

Proof of Theorem 2.1 (Upper Estimate). Fix e ¼ 1=na: Lemma 2.3 states
that there exist at most 2n elements y 2 lq; creating e-net EðIa : lq ! lqÞ of the
image Ia of the unit ball of lq in the space lq: Even more, all coordinates
yj ¼ 0 for j ¼ nþ 1; nþ 2; . . . :

Let us now construct the e-net EðI : lqðjal2
j

p Þ ! lqðl2
j

1ÞÞ for the set
of x; such that jjx : lqðjal2

j

p Þjj41: Each x we write as fx1; x2; . . . ; xj; . . .g
where each xj is an element of the finite-dimensional subspace l2

j

p :
In turn, each xj has coordinates fxj1; . . . ; xjm; . . . ; xj2jg: We then
construct the e-net EðI : lqðjal2

j

p Þ ! lqðl2
j

1ÞÞ in the space lqðl2
j

1Þ: We
need to consider only elements x such that xj ¼ 0 for any vector xj
with j5n:

The sequence of numbers fjajjxjjjlpg belongs to the unit ball of lq:
Therefore, there exists an element y from e-net EðIa : lq ! lqÞ such that
jjfjjxjjjpg � fyjgjjlq4e: Observe that jjfjayjgjjq4Const. Let us take %xxj ¼
yj

jjxj jjp
xj: Then

jjx� %xx : lqðl2
j

1Þjj4 xj �
yj

jjxjjjp
xj

�����
�����

�����
�����
p

������
������

������
������
lq

4e:

For each j ¼ 1; . . . ;m; m5n we apply Lemma 2.2 taking 2nj points of the
net of the unit ball of l2

j

p ; where

Xm
j¼1

nj ¼ n:
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This means that for each element y 2 EðIa : lq ! lqÞ there exists a 2n-element
net in the space lqðl2

j

1Þ; approximating x with the error at most

Xm
j¼1

ðyjenjðI : l2
j

p ! l2
j

1ÞÞq þ
Xn

j¼mþ1

ðyjÞ
q

( )1=q

:

Taking into account that jjfjayjgjjq4Const; we estimate the error by

sup
14j4m

ðj�aenj ðI : l2
j

p ! l2
j

1Þ þ m�aÞ:

Now we have to choose the numbers nj in the optimal way.
If we put nj ¼ 2

p2
jðlog n� jÞ; j ¼ 1; 2; . . . ; log n; then applying the third

line of Lemma 2.2 to

sup
14j4log n

j�aenj ðI : l2
j

p ! l2
j

1Þ;

we obtain

sup
14j4log n

2�j=pj�a2�nj2�j
¼ sup

14j4log n
2j=pj�an�2=p � n�1=p log�a n:

This estimate is sufficient for any a > 0:
Choosing the numbers nj in the main interval log n4j4m; we

consider three cases. We can take m ¼ n1=apðlog nÞ1�2=ap in the first
case, and m ¼ n1=2 in the second and third cases. In each
case the application of the second line of Lemma 2.2 finishes the
proof.

Case 1. Let a > 2=p: Put nj ¼ nðlog nÞap�2j�ðap�1Þ:
Case 2. Let a52=p: Put nj ¼ nj�ðap�1Þmap�2:
Case 3. Let a ¼ 2=p: Put nj ¼ nj�1ðlog nÞ�1:
The upper estimate is proved. ]

We need the following statement, which supposedly is well known in
coding theory. We could not find the exact reference, and present its proof
here. In the following, jQj denotes the cardinality of the set Q; and the
‘‘interval’’ ½1;M � means the set f1; 2; . . . ;Mg:

Lemma 2.4. Let us consider a ‘‘brick’’ P � Zm; P ¼ ½1;M �m; where

M is a natural number. Let s5m: Then there exists a set Q � P such

that

(1) jQj5Mm�s�
m
s

� :
(2) jfj: xj=yjgj > s for any two elements x; y 2 Q:
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Proof. We introduce the Hamming distance between two points x ¼
ðx1; . . . ; xmÞ and y ¼ ðy1; . . . ; ymÞ of Zm: The Hamming distance is given by

H ðx; yÞ :¼ jfj: xj=yjgj:

Set P contains Mm elements. Let Q be a maximal subset of P such that for
any elements x; y 2 Q; H ðx; yÞ > s: If x 2 Q then for at most Msðms Þ points
y 2 P; H ðx; yÞ4s: Since Q is the maximal subset

jQjMs m

s

 !
5Mm

or jQj5Mm�s�m
s

� :
The lemma is proved. ]

Proof of Theorem 2.1 (Lower Estimates). Take the blocks of vectors with
numbers from n to 2n and let k ¼ 2n=2: By Lemma 2.2 for each block

e2n=2ðj
�aI : l2

j

p ! l2
j

1Þ � n�a logð2n�n=2 þ 1Þ
2n=2

� �1=p

’
n1=p�a

2n=2p
; n4j42n:

Let us denote this number by e: Then in each block we can take 22n=2e-
separated points.

We can now apply Lemma 2.4, taking M ¼ 22n=2 ; m ¼ n and s ¼ n=2:
Then jQj52Cðn=2Þ2

n=2
: The norm of each element in lqðjal2

j

p Þ is

X2n
j¼n

1q

 !1=q

’ n1=q:

The distance between any two elements

X
n4j42n; xj=yj

n1=p�a

2n=2p

� �q
0
@

1
A

1=q

�
n1=p�aþ1=q

2n=2p
:

Finally, we obtain

e2n=2n=2ðI : lqðjal2
j

p Þ ! lqðl2
j

1ÞÞ �
n1=p�a

2n=2p

or

emðI : lqðjal2
j

p Þ ! lqðl2
j

1ÞÞ �
log2=p�a m

m1=p
: ð2:1Þ
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For the same collection of blocks from n to 2n let k ¼ n: Then by Lemma
2.2 for each block

enðj�aI : l2
j

p ! l2
j

1Þ �
1

na
:

It means that in each block we have 2n n�a-separated points. We apply
again Lemma 2.4, taking M ¼ 2n; m ¼ n; and s ¼ n=2: Then jQj � 2Cn

2

: The
norm of each element in lqðjal2

j

p Þ is n1=q and the distance between any two
elements 5n1=qn�a: This gives

en2 ðI : lqðjal2
j

p Þ ! lqðl2
j

1ÞÞ �
1

na

or

emðI : lqðjal2
j

p Þ ! lqðl2
j

1ÞÞ �
1

ma=2
: ð2:2Þ

These two estimates (2.1) and (2.2) give the necessary estimate from below,
except for the case a ¼ 2=p:

Let us consider a ¼ 2=p; and take the same blocks numbered
from n to 2n: Then by Lemma 2.2 for each n4k42n=2 and for each
block

ekðj�aI : l2
j

p ! l2
j

1Þ �
1

n1=pk1=p
:

Applying Lemma 2.4 with M ¼ 2k ; m ¼ n and s ¼ n=2 we obtain that for a
subset

An;2n ¼ a :
X2n
j¼n

ðjajjajjjl2jp Þ
q

( )1=q

41

8<
:

9=
;

generated by blocks numbered from n to 2n

eknðAn;2n; lqðl2
j

1ÞÞ �
1

n1=pk1=p
:

Let us take r ¼ c1 logðlog nÞ; . . . ; log n: Then the last estimate implies that in
a subspace generated by blocks numbered from 2r to 2rþ1

ek2r ðA2r ;2rþ1 ; lqðl2
j

1ÞÞ �
1

2r=pk1=p
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for any 2r5k522r�1

2r: Choose k ¼ n2

2r
: Then for each subspace generated by

blocks numbered from 2r to 2rþ1

en2ðA2r ;2rþ1 ; lqðl2
j

1ÞÞ �
1

n2=p
:

We again apply Lemma 2.4, taking M ¼ 2n
2

; m ¼ log n; and s ¼ 1
2
log n:

Then

en2 log nðI : lqðjal2
j

p Þ ! lqðl2
j

1ÞÞ �
1

n2=p

or

emðI : lqðjal2
j

p Þ ! lqðl2
j

1ÞÞ �
log m
m

� �1=p

:

Thus the theorem is proved. ]

3. CONCLUDING REMARKS

The method of the above estimates used in the proof of
Theorem 2.1 can be easily applied in a more general situation. For
example, let 05p15p241 and consider operator Ia : lqðjal2

j

p1
Þ ! lqðl2

j

p2
Þ:

Then

ekðI : lqðjal2
j

p1
Þ ! lqðl2

j

p2
ÞÞ

�

k�1=p1þ1=p2 ð1 þ log kÞ2=p1�2=p2�a if a > 2=p1 � 2=p2;

ðk�1ð1 þ log kÞÞ1=p1�1=p2 if a ¼ 2=p1 � 2=p2;

k�a=2 if a52=p1 � 2=p2:

8>>>><
>>>>:
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